

Vipac Engineers & Scientists Ltd. 279 Normanby Rd, Port Melbourne, VIC 3207, Australia Private Bag 16, Port Melbourne, VIC 3207, Australia t. +61 3 9647 9700 | f. +61 3 9646 4370 | e. melbourne@vipac.com.au w. www.vipac.com.au | A.B.N. 33 005 453 627 | A.C.N. 005 453 627

Vipac Engineers & Scientists

Aldeck Group Pty Ltd

Test Report - Temporary Handrail Posts

30B-15-0096-TRP-393171-0

15 Mar 2016

Report Title: Test Report - Temporary Handrail Posts Job Title: Temporary Handrail Post Testing			
OCUMENT NO: 30B-15-0096-TRP-393171-0 REPORT CODE: TRP			
PREPARED FOR:		PREPARED BY:	
Aldeck Group Pty Ltd		Vipac Engineers & Scientists Ltd.	
15 Brock Street		279 Normanby Rd,	
Thomastown, VIC, 3074		Port Melbourne, VIC 3207,	
Australia		Australia	
CONTACT: Anton Buene	emann		
Tel: 0413 446 250		Tel: +61 3 9647 9700	
Fax: +61 3 9465 1126		Fax : +61 3 9646 4370	
PREPARED BY:	Hamic	Date: 15 Mar 2016	
	Jared Carnie Environmental Test Engineer	Email: jaredc@vipac.com.au	
REVIEWED BY:	Roffy	Date: 15 Mar 2016	
	Tim Roffey Project Engineer	Email: timr@vipac.com.au	
REVISION HISTORY			
Revision No:	Date Issued	Reason / Comments	
0	15 Mar 2016	Initial Issue	
1			
2			
DISTRIBUTION			
Copy No: 2	Location	Comments	
1	Project Folder		
2	Client (PDF Format)	Uncontrolled Copy	

NOTE: This is a controlled document within the document control system. If revised, it must be marked SUPERSEDED and returned to the Vipac QA Representative. This document contains commercial, conceptual and engineering information that is proprietary to Vipac Engineers & Scientists Ltd. We specifically state that inclusion of this information does not grant the Client any license to use the information without Vipac's written permission. We further require that the information not be divulged to a third party without our written consent.

EXECUTIVE SUMMARY

Vipac Engineers & Scientists (Vipac) has been commissioned by Aldeck Group Pty Ltd (the client) to undertake compliance testing on components of their temporary handrail system.

Testing was carried out in accordance with Section 4.1 of AS/NZS 4994.1:2009 *Temporary edge protection Part 1: General requirements*. Testing was carried out at the client's Thomastown facility 5th February 2016.

The components were tested individually (not as a system) and were found to comply with the requirements outlined in Section 4.1 of AS/NZS 4994.1:2009 and are suitable for use on roofs with a slope up to and including 15° from the horizontal.

Details of the testing are presented in the pages of this report.

TABLE OF CONTENTS

1	INTRODUCTION	5	
2	SAMPLES UNDER TEST	5	
3	TEST SPECIFICATION	14	
4	TEST APARATUS	14	
5	TEST METHOD	15	
6	TEST RESULTS	17	
7	CONCLUSION	26	
APPEN	APPENDIX A – ALUMINIUM POST MATERIAL INFORMATION		
APPEN	APPENDIX B – MATERIAL INFORMATION		

1 INTRODUCTION

Vipac Engineers & Scientists (Vipac) has been commissioned by Aldeck Group Pty Ltd (the client) to perform to undertake performance testing on components of their temporary perimeter handrail system. The aim of the testing is to determine the system's compliance with Section 4.1 of AS/NZS 4994.1:2009 *Temporary edge protection Part 1: General requirements*. The samples tested are as described in Section 2 of this report; additional material information can be found in Appendix A and Appendix B of this report. The test specification is as presented in Section 3.

2 SAMPLES UNDER TEST

Parameter	Details			
Test sample 1:	Offset bracket (Z design) with C-purlin clamp, 660mm steel base and aluminium post			
Manufacturer:	Aldeck (the client)			
Comments / Remarks:	Tested individually/not in a system			

Figure 1: Offset bracket (Z design) with C-purlin clamp, 660mm steel base and aluminium post

Figure 2: Offset bracket (Z design) with C-purlin clamp

Parameter	Details
Test sample 2:	Gable end clamp with 660mm steel base and aluminium post
Manufacturer:	Aldeck (the client)
Comments / Remarks:	Tested individually/not in a system

Figure 3: Gable end clamp with 660mm steel base and aluminium post

Figure 4: Gable end clamp

Parameter	Details
Test sample 3:	Beam clamp with 660mm steel base, 600mm extension bar and aluminium post
Manufacturer:	Aldeck (the client)
Comments / Remarks:	Tested individually/not in a system

Tested individually/not in a system

Figure 5: Beam clamp with 660mm steel base, 600mm extension bar and aluminium post

Figure 6: Beam clamp

Parameter	Details			
Test sample 4:	Offset bracket (C design) with C-purlin clamp, 660mm steel base and aluminium post			
Manufacturer:	Aldeck (the client)			
Comments / Remarks:	Tested individually/not in a system			

Figure 7: Offset bracket (C design) with C-purlin clamp, 660mm steel base and aluminium post

Figure 8: Offset bracket (C design) with C-purlin clamp

Parameter	Details		
Test sample 5:	PFC beam clamp with 660mm steel base and aluminium post		
Manufacturer:	Aldeck (the client)		
Comments / Remarks:	Tested individually/not in a system		

Figure 9: PFC beam clamp with 660mm steel base and aluminium post

Figure 10: PFC beam clamp

Parameter	Details
Test sample 6:	Beam clamp with 660mm steel base and aluminium post
Manufacturer:	Aldeck (the client)
Comments / Remarks:	Tested individually/not in a system

Figure 11: Beam clamp with 660mm steel base and aluminium post

Figure 12: Beam clamp

Parameter	Details		
Test sample 7:	Timber beam clamps with 660mm steel base and aluminium post		
Manufacturer:	Aldeck (the client)		
Comments / Remarks:	Tested individually/not in a system. Timber beam clamps spaced 620mm apart. Tri- Fixx type 17 screws (12 x 40mm) were used to mount the clamps (see Figure 17).		

Figure 13: Timber beam clamps with 660mm steel base and aluminium post

Figure 14: Timber beam clamp

Parameter	Details			
Test sample 8:	Timber beam clamp with offset bracket (C design), 660mm steel base and aluminium post			
Manufacturer:	Aldeck (the client)			
Comments / Remarks:	Tested individually/not in a system. Timber beam clamps spaced 620mm apart. Tri- Fixx type 17 screws (12 x 40mm) were used to mount the clamps (see Figure 17).			

Figure 15: Timber beam clamp with offset bracket (C design), 660mm steel base and aluminium post

Figure 16: Timber beam clamp with offset bracket (C design)

Figure 17: Tri-Fixx type 17 screws

Parameter	Details	
Test sample 9:	Beam clamp with long tail 660mm steel base and aluminium post	
Manufacturer:	Aldeck (the client)	
Comments / Remarks:	Tested individually/not in a system. Length of tail – 450mm.	

Figure 18: Beam clamp with long tail 660mm steel base and aluminium post

Figure 19: Beam clamp

3 TEST SPECIFICATION

The samples were tested in accordance with Section 4.1 and Appendix A of AS/NZS 4994.1:2009 *Temporary edge protection Part 1: General requirements*. Table 2 shows a summary of the testing requirements for the system. The client has specified the samples are to be installed only on roofs with a slope up to and including 15° from the horizontal therefore no dynamic testing was required (as per AS/NZS 4994:2009).

4 TEST APARATUS

Instrument	Manufacturer	Model	Serial Number	Vipac Asset No.
5 Tonne Load Cell	Millennium Mechatronics	MT501	P2A086501	33662
0.05 – 200m Distance Laser	Leica	Disto D5	N/A	33606

	Direction of load application				Test location
Load component	Down Horizont		Horizontal OUT	Purpose of test	in plane (see Figure 4.1)
Post	NR	S	S or D	Post strength and connection to support	1
Top rail	S	S	S or D	Strength of rail, joiner, connection to post and deflection	2 and 4
Midrail, only where section/material properties are different to top rail	S	S	S or D	Strength of rail, connection to post and deflection	2
Bottom rail	NR	NR	S or D	Strength of rail, connection to post and deflection	2
Top rail with inline joiner	S	S	S or D	Strength of rail, joiner, connection to post and deflection	3
Toeboard	NR	NR	S or D	Strength, connection to post and deflection	2
Structural infill panel	S	S	S or D	Strength of rail, connection to post and deflection	2 (see Note)
Non-structural infill panel	NR	NR	S Types 1, 2 D Type 3	Strength—Deflection not a criteria	2 (see Note)
LEGEND: Down = test load Horizontal IN = test load Horizontal OUT = test load S = static test D = dynamic NR = test not n	applied applied applied sting as s testing a required	vertically dov horizontally i horizontally o pecified in the as specified in	vnward at poin nward toward outward away e relevant App the relevant A	nt of application s the roof from the roof pendix Appendix	

Table 1: Equipment used during testing

 Table 2: Summary of testing requirements for the system¹

¹ Table taken from AS/NZS 4994.1:2009 (Table 4.1)

5 TEST METHOD

The test samples were installed as per client specifications on custom test rigs built by the client at their Thomastown facility. The client has advised that materials of the same characteristics as the intended supporting structure were used to build the test rigs as to simulate the manner of installation. Figure 20 to Figure 22 shows the test rigs.

The samples were tested in accordance with the test specification outlined in Section 3. During testing, the static load was applied each sample using lifting and ratchet straps. The load cell was installed inline with these straps to ensure the correct load was applied. Figure 23 illustrates the static load application setup. Deflection of the post was measured at the position of the top rail.

Figure 20: I-beam and timber beam test rig

Figure 21: PFC beam test rig

Figure 22: I-beam and C-purlin test rig

Figure 23: Static load testing setup

6 TEST RESULTS

Test Location:	Aldeck Thomastown Factory
Test Date:	5/02/2016

Sample 1:	Offset bracket (Z design) with C-purlin clamp, 660mm steel base and aluminium post		
Test:	Static Inward		
Test Standard	AS/NZS 4994.1:2009 Appendix A		
Applied Load:	: Proof = 608.2 N		
Net Deflection	: 40 mm		
Result:	Pass – deflection less than 101 mm		
Test:	Static Outward		
Test Standard	AS/NZS 4994.1:2009 Appendix A		
Applied Load:	Proof = 637.7 N, Maximum = 1206.6 N		
Net Deflection	: 87 mm		

Figure 24: Sample 1 under maximum static load

Sample 2:

Test:	Static Inward
Test Standard:	AS/NZS 4994.1:2009 Appendix A
Applied Load:	Proof = 608.2 N
Net Deflection:	: 58 mm
Result:	Pass – deflection less than 101 mm
Test:	Static Outward
Test Standard:	AS/NZS 4994.1:2009 Appendix A
Applied Load:	Proof = 667.1 N, Maximum = 1206.6 N
Net Deflection:	: 89 mm
Result:	Pass – deflection less than 101 mm, no ultimate failure

Gable end clamp with 660mm steel base and aluminium post

Figure 25: Sample 2 under maximum static load

Sample 3: Beam clamp with 660mm steel base, 600mm extension bar and aluminium post

Test: Static Inward

Test Standard: AS/NZS 4994.1:2009 Appendix A

Applied Load: Proof = 608.2 N

Net Deflection: 57 mm

Result: Pass – deflection less than 101 mm

Test: Static Outward

Test Standard: AS/NZS 4994.1:2009 Appendix A

Applied Load: Proof = 647.5 N, Maximum = 1236.1 N

Net Deflection: 74 mm

Figure 26: Sample 3 under maximum static load

Sam	ole 4:	Offset bracket (C desig	n) with C-purlin clar	mp. 660mm steel base and alumini	um post
Quiling					

Test: Static Inward

Test Standard: AS/NZS 4994.1:2009 Appendix A

Applied Load: Proof = 627.8 N

Net Deflection: 50 mm

Result: Pass – deflection less than 101 mm

Test: Static Outward

Test Standard: AS/NZS 4994.1:2009 Appendix A

Applied Load: Proof = 608.2 N, Maximum = 1206.6 N

Net Deflection: 78 mm

Figure 27: Sample 4 under maximum static load

Sample 5:	PFC beam clamp with 660mm steel base and aluminium post		
Test:	Static Inward		
Test Standard:	est Standard: AS/NZS 4994.1:2009 Appendix A		
Applied Load:	: Proof = 627.8 N		
Net Deflection:	Net Deflection: 43 mm		
Result:	Pass – deflection less than 101 mm		
Test:	Static Outward		
Test Standard: AS/NZS 4994.1:2009 Appendix A			
Applied Load:	pplied Load: Proof = 618.0 N, Maximum = 1206.6 N		
Net Deflection: 96 mm			
Result:	Pass – deflection less than 101mm, no ultimate failure		

Figure 28: Sample 5 under maximum static load

Sample 6:	Beam clamp with 660mm steel base and aluminium post		
Test:	Static Inward		
Test Standard:	AS/NZS 4994.1:2009 Appendix A		
Applied Load:	id: Proof = 627.8 N		
Net Deflection:	: 63 mm		
Result:	Pass – deflection less than 101 mm		
Test:	Static Outward		
Test Standard: AS/NZS 4994.1:2009 Appendix A			
Applied Load:	Applied Load: Proof = 608.2 N, Maximum = 1206.6 N		
Net Deflection:	: 61 mm		
Result:	Pass – deflection less than 101 mm, no ultimate failure		

Figure 29: Sample 6 under maximum static load

Sample 7:

Test:	Static Inward	
Test Standard:	AS/NZS 4994.1:2009 Appendix A	
Applied Load:	Proof = 608.2 N	
Net Deflection:	: 80 mm	
Result:	Pass – deflection less than 101 mm	
Test:	Static Outward	
Test Standard: AS/NZS 4994.1:2009 Appendix A		
Applied Load:	lied Load: Proof = 637.7 N, Maximum = 1206.6 N	
Net Deflection: 79 mm		
Result:	Pass – deflection less than 101 mm, no ultimate failure	

Timber beam clamps with 660mm steel base and aluminium post

Figure 30: Sample 7 under maximum static load

Sample 8: Timber beam clamp with offset bracket (C design), 660mm steel base and aluminium post

Test: Static Inward

Test Standard: AS/NZS 4994.1:2009 Appendix A

Applied Load: Proof = 637.7 N

Net Deflection: 89 mm

Result: Pass – deflection less than 101 mm

Test: Static Outward

Test Standard: AS/NZS 4994.1:2009 Appendix A

Applied Load: Proof = 608.2 N, Maximum = 1206.6 N

Net Deflection: 69 mm

Figure 31: Sample 8 under maximum static load

Sample 9:	Beam clamp with long tail 660mm steel base and aluminium post		
Test:	Static Inward		
Test Standard:	est Standard: AS/NZS 4994.1:2009 Appendix A		
Applied Load:	1: Proof = 618.0 N		
Net Deflection:	: 41 mm		
Result:	Pass – deflection less than 101 mm		
Test:	Static Outward		
Test Standard: AS/NZS 4994.1:2009 Appendix A			
Applied Load:	blied Load: Proof = 618.0 N, Maximum = 1216.4 N		
Net Deflection: 79 mm			
Result:	Pass – deflection less than 101 mm, no ultimate failure		

Figure 32: Sample 9 under maximum static load

7 CONCLUSION

Vipac carried out performance testing on components of a temporary perimeter handrail system in accordance with Section 4.1 and Appendix A of AS/NZS 4994.1:2009 *Temporary edge protection Part 1: General requirements* as directed by Aldeck Group Pty Ltd. Table 3 summarises the components tested and the results of each test (when tested as a component only not as a system). The results from all components tested indicate they comply with the requirements outlined in Section 4.1 of AS/NZS 4994.1:2009 for use on roofs with a slope up to and including 15° from horizontal.

Sample	Description	Test Standard	Result
1	Offset bracket (Z design) with C-purlin clamp, 660mm steel base and aluminium post	AS/NZS 4994.1:2009 Appendix A	Pass
2	Gable end clamp with 660mm steel base and aluminium post	AS/NZS 4994.1:2009 Appendix A	Pass
3	Beam clamp with 660mm steel base, 600mm extension bar and aluminium post	AS/NZS 4994.1:2009 Appendix A	Pass
4	Offset bracket (C design) with C-purlin clamp, 660mm steel base and aluminium post	AS/NZS 4994.1:2009 Appendix A	Pass
5	PFC beam clamp with 660mm steel base and aluminium post	AS/NZS 4994.1:2009 Appendix A	Pass
6	Beam clamp with 660mm steel base and aluminium post	AS/NZS 4994.1:2009 Appendix A	Pass
7	Timber beam clamps with 660mm steel base and aluminium post	AS/NZS 4994.1:2009 Appendix A	Pass
8	Timber beam clamp with offset bracket (C design), 660mm steel base and aluminium post	AS/NZS 4994.1:2009 Appendix A	Pass
9	Beam clamp with long tail 660mm steel base and aluminium post	AS/NZS 4994.1:2009 Appendix A	Pass

Table 3: Summary of test results

APPENDIX A – ALUMINIUM POST MATERIAL INFORMATION

APPENDIX B – MATERIAL INFORMATION

Sample	Part	Material
	Offset bracket (Z design)	40x40x4mm and 30x30x3mm galvanised steel tube
	C-purlin clamp	100x50x4mm mild steel tube
1	660mm steel base	40x40x4mm mild steel tube
	Aluminium post	See Appendix A
	Connecting tube	30x30x3mm galvanised steel tube
	Gable end clamp	50x50x5mm mild steel tube
	660mm steel base	40x40x4mm mild steel tube
2	Aluminium post	See Appendix A
	Connecting tube	30x30x3mm galvanised steel tube
	Beam clamp	100x50x4mm mild steel tube
	660mm steel base	40x40x4mm mild steel tube
	600mm extension bar	40x40x4mm mild steel tube
3	Base mid support	50x50x5mm mild steel tube
	Aluminium post	See Appendix A
	Connecting tube	30x30x3mm galvanised steel tube
	Offset bracket (C design)	40x40x4mm and 30x30x3mm galvanised steel tube
4	C-purlin clamp	100x50x4mm mild steel tube
	660mm steel base	40x40x4mm mild steel tube
	Aluminium post	See Appendix A
	Connecting tube	30x30x3mm galvanised steel tube

	Beam clamp	100x50x4mm mild steel tube
_	660mm steel base	40x40x4mm mild steel tube
5	Aluminium post	See Appendix A
	J-bar	30x30x3mm galvanised steel tube
	Beam clamp	100x50x4mm mild steel tube
	660mm steel base	40x40x4mm mild steel tube
6	Aluminium post	See Appendix A
	Connecting tube	30x30x3mm galvanised steel tube
	Timber beam clamps	3mm mild steel plate and 40x40x4mm mild steel tube
_	660mm steel base	40x40x4mm mild steel tube
1	Aluminium post	See Appendix A
	Connecting tube	30x30x3mm galvanised steel tube
	Timber beam clamps	3mm mild steel plate and 40x40x4mm mild steel tube
	Offset bracket (C design)	40x40x4mm and 30x30x3mm galvanised steel tube
8	660mm steel base	40x40x4mm mild steel tube
	Aluminium post	See Appendix A
	Connecting tube	30x30x3mm galvanised steel tube
9	Beam clamp	100x50x4mm mild steel tube
	Long tail 660mm steel base	40x40x4mm mild steel tube
	Aluminium post	See Appendix A

Table 4: Summary of component materials